Do you need any help for Electrodes Maintenance

Maintenance plays a key role in industry. It is the singular, most important factor contributing to productivity and profitability.

+91 11 29523595, 41707156 info@precisionalloys.org

Book Now

Paper Industry

Paper is a thin material produced by pressing together moist fibres of cellulose pulp derived from wood, rags or grasses, and drying them into flexible sheets. It is a versatile material with many uses, including writing, printing, packaging, cleaning, and a number of industrial and construction processes.

Chemical pulping

To make pulp from wood, a chemical pulping process separates lignin from cellulose fibres. This is accomplished by dissolving lignin in a cooking liquor, so that it may be washed from the cellulose; this preserves the length of the cellulose fibres. Paper made from chemical pulps are also known as wood-free papers–not to be confused with tree-free paper; this is because they do not contain lignin, which deteriorates over time. The pulp can also be bleachedto produce white paper, but this consumes 5{c909ba32dd49e2347b9da76d2471d15615fb19a50a31d6362bb7d8ae14133d26} of the fibres; chemical pulping processes are not used to make paper made from cotton, which is already 90{c909ba32dd49e2347b9da76d2471d15615fb19a50a31d6362bb7d8ae14133d26} cellulose.

There are three main chemical pulping processes: the sulfite process dates back to the 1840s and it was the dominant method extent before the second world war. The kraft process, invented in the 1870s and first used in the 1890s, is now the most commonly practiced strategy, one of its advantages is the chemical reaction with lignin, that produces heat, which can be used to run a generator. Most pulping operations using the kraft process are net contributors to the electricity grid or use the electricity to run an adjacent paper mill. Another advantage is that this process recovers and reuses all inorganic chemical reagents. Soda pulping is another specialty process used to pulp straws, bagasse and hardwoods with high silicate content.

Mechanical pulping

There are two major mechanical pulps: thermomechanical pulp (TMP) and groundwood pulp (GW). In the TMP process, wood is chipped and then fed into steam heated refiners, where the chips are squeezed and converted to fibres between two steel discs. In the groundwood process, debarked logs are fed into grinders where they are pressed against rotating stones to be made into fibres. Mechanical pulping does not remove the lignin, so the yield is very high, >95{c909ba32dd49e2347b9da76d2471d15615fb19a50a31d6362bb7d8ae14133d26}, however it causes the paper thus produced to turn yellow and become brittle over time. Mechanical pulps have rather short fibres, thus producing weak paper. Although large amounts of electrical energy are required to produce mechanical pulp, it costs less than the chemical kind.

Producing paper

The pulp is fed to a paper machine where it is formed as a paper web and the water is removed from it by pressing and drying.

Pressing the sheet removes the water by force; once the water is forced from the sheet, a special kind of felt, which is not to be confused with the traditional one, is used to collect the water; whereas when making paper by hand, a blotter sheet is used instead.

Drying involves using air or heat to remove water from the paper sheets. In the earliest days of paper making, this was done by hanging the sheets like laundry; in more modern times, various forms of heated drying mechanisms are used. On the paper machine, the most common is the steam-heated can dryer. These can reach temperatures above 200 °F (93 °C) and are used in long sequences of more than forty cans where the heat produced by these can easily dry the paper to less than six percent moisture.

 

Paper grain

All paper produced by paper machines as the Fourdrinier Machine are wove paper, i.e. the wire mesh that transports the web leaves a pattern that has the same density along the paper grain and across the grain. Textured finishes, watermarks and wire patterns imitating hand-made laid paper can be created by the use of appropriate rollers in the later stages of the machine.

Wove paper does not exhibit “laidlines”, which are small regular lines left behind on paper when it was handmade in a mould made from rows of metal wires or bamboo. Laidlines are very close together. They run perpendicular to the “chainlines”, which are further apart. Handmade paper similarly exhibits “deckle edges”, or rough and feathery borders.